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Motivation

Scientific computing relies on strong server-class processors 
◦ Wide availability of GPUs, many-core processors, and special-

purpose accelerators and functional units
◦ Majority of calculations still take place on commodity server-class processors

◦ Many applications still have large regions of serial code
◦ Necessitates the need for powerful cores

Two classes of computing platforms for U.S. Department of Energy
◦ Advanced Technology Systems (ATS)
◦ Capacity Technology Systems (CTS)
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Contributions

Evaluate the impact of the significant hardware changes on Intel’s leading 
Skylake-based server platform using microbenchmarks
◦ Memory bandwidth
◦ Cache bandwidth
◦ Floating point performance

Project the impact that these changes will have on real applications of interest to 
the scientific community using a selection of mini-applications
◦ Memory bandwidth
◦ Indirect memory accesses from cache and main memory
◦ Throughput
◦ Vectorization and SMT
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Skylake Microarchitecture

6th generation Core microarch.
14nm+ process technology
Mesh-based interconnect
6 memory channels
◦ Should help some memory 

bandwidth-bound codes
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6th generation Core microarchitecture



Skylake Microarchitecture5

Haswell Skylake

Out-of-Order Window 192 224

In-Flight Mem. Ops, LD+ST 72+42 72+56

Scheduler Entries 60 97

Allocation Queue 56 64

Registers, INT+FP 168+168 180+168

L1 BW, LD+ST (B/cyc) 64+32 128+64

L2 Unified TLB
2k+2M: 1024 2k+2M: 1536

1G: 16

Core and cache subsystem redesigned to support 
greater locality and reduce L3 contention
Double L1 bandwidth
Native support for large pages

AVX-512
◦ Masks
◦ Three vector ports (0,1,5)
◦ 1x 512b
◦ 2x 256b that can be merged
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Evaluation

Results averaged over 10 runs with random nodes chosen for each trial
Two Intel-based platforms
◦ Shepard (Haswell)
◦ Dual-socket Xeon E5-2697v3
◦ 2.3GHz
◦ 16 cores with dual SMT
◦ 32KiB L1/256KiB L2/40MiB distributed L3

◦ 128GB 2133MT/s DDR4

ICC 18.1.0
◦ GCC 4.9.3 compatibility
◦ MKL 18.1
◦ OpenMPI 2.1.2
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Two Intel-based platforms
◦ Blake (Skylake)
◦ Dual-socket Xeon Platinum 8160
◦ 2.1GHz
◦ 24 cores with dual SMT
◦ 32KiB L1/1MiB L2/33MiB distributed L3

◦ 192GB 2666MT/s DDR4



Results – Memory Bandwidth

Vectorization improves memory bandwidth regardless of architecture
UPI links on SKX improve remote socket bandwidth (2.2x higher)
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Results – Cache Bandwidth (Small Array)8

L1 bandwidth is lower on SKX
◦ Can be partially attributed to lower clock frequency

L2 bandwidth is lower for reads and slightly higher for writes



Results – Cache Bandwidth (Large Array)9

Moving to a macro view, the larger L2 size on SKX clearly improves the 
bandwidth for a much greater range of array sizes
Some variation in Haswell despite setting core affinity



Results – Floating Point Arithmetic10

Doubling of vector size does result in doubling of FLOP rate
◦ 784GF/s at 16 SKX cores vs. 392FG/s at 13 HSW cores

Additional cores do not affect the FLOP rate, most likely due to thermal throttling



Mini-Applications and Benchmarks

High Performance Conjugate Gradient (HPCG)

LULESH
◦ Hydrodynamics over unstructured meshes

XSBench
◦ Monte Carlo transport

SW4Lite
◦ 3D modeling of seismic activity
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Results – HPCG

HPCG kernels are considered to be memory bandwidth-bound
◦ Would expect ~50% performance improvement due to additional memory channels 

but see ~80%

Additional performance gains can be attributed to general processor 
enhancements
◦ Larger OoO window, scheduler, and additional entries in the store queue

Vectorization makes almost no difference in default implementation
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Kernel Skylake (AVX512) Skylake (NoVec) Haswell (AVX2) Haswell (NoVec)

DDOT 20.05 30.50 9.87 11.41

WAXBY 16.70 16.88 9.53 9.35

SpMV 18.56 17.95 10.22 10.20

Multi-Grid 18.29 17.94 10.01 9.89

Solve (Total) 18.33 18.04 10.03 9.95



Results – LULESH13

Only 4-8% difference in vectorized/non-vectorized code
SMT on SKX good from 1-16 threads (1-12% improvement)
SMT on HSW always underperforms



Results – XSBench14

SMT improves performances on both SKX (~20%) and HSW (~16%)
◦ Able to hide memory latencies with additional lookups

Vectorization improves performance on SKX by 22% and HSW by 24%
◦ Scatter/gather instructions help here where accesses aren’t necessarily in the cache



Results – SW4Lite15

Vectorization improves performance significantly on both systems
◦ 39-45% fast on SKX and 45-47% faster on HSW

SMT hinders performance on both systems
◦ 11% slower on SKX and 30% slower on HSW



Conclusions

Skylake’s redesigned core architecture provides a host of improvements
◦ Redesigned cache and  6 memory channels
◦ STREAM shows nearly 2x improvement over previous generation à 223.8GB/s vs 112.6GB/s
◦ HPCG shows a 0.8x improvement
◦ LULESH shows a gain of 1.6x

◦ Wider vector units
◦ DGEMM had a 2x performance improvement over previous generation
◦ SW4Lite isn’t quite as impressive but still shows a 0.83x improvement

◦ 2D mesh
◦ XSBench shows a 1.85x improvement on Skylake over Haswell

The changes made in the core while minimizing power increases are impressive 
and HPC workloads should benefit greatly from them
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